
Lagrange Multipliers without PermanentScarring

Dan Klein

1 Intr oduction

Thistutorialassumesthatyouwanttoknow whatLagrangemultipliersare,butaremoreinterestedin gettingthe
intuitionsandcentralideas.It containsnothingwhich would qualify asa formal proof,but thekey ideasneed
to reador reconstructthe relevant formal resultsareprovided. If you don’t understandLagrangemultipliers,
that’sfine. If youdon’t understandvectorcalculusatall, in particulargradientsof functionsandsurfacenormal
vectors,the majority of the tutorial is likely to besomewhatunpleasant.Understandingaboutvectorspaces,
spannedsubspaces,andlinear combinationsis a bonus(a few sectionswill be somewhatmysteriousif these
conceptsareunclear).

Lagrangemultipliersarea mathematicaltool for constrainedoptimizationof differentiablefunctions.In the
basic,unconstrainedversion,we have some(differentiable)function

���������
	�	
	��������� �� �
thatwe wantto

maximize(or minimize). We cando this by first find extremepointsof
�

, which arepointswherethegradient� �
is zero,or, equivlantly, eachof thepartialderivativesis zero. If we’re lucky, pointslike this thatwe find

will turnout to be(local)maxima,but they canalsobeminimaor saddlepoints.Wecantell thedifferentcases
apartby a varietyof means,includingcheckingpropertiesof the secondderivativesor simpleinspectingthe
function values. Hopefully this is all familiar from calculus,thoughmaybeit’s moreconcretelyclearwhen
dealingwith functionsof just onevariable.

All kinds of practicalproblemscancrop up in unconstrainedoptimization,which we won’t worry about
here.Oneis that

�
andits derivative canbeexpensive to compute,causingpeopleto worry abouthow many

evaluationsare neededto find a maximum. A secondproblemis that therecan be (infinitely) many local
maximawhicharenotglobalmaxima,causingpeopleto despair. We’regoingto ignoretheseissues,whichare
asbig or biggerproblemsfor theconstrainedcase.

In constrainedoptimization,we have the samefunction
�

to maximizeasbefore. However, we alsohave
somerestrictionson which points in

� 
we are interestedin. The pointswhich satisfy our constraintsare

referedto as the feasibleregion. A simple constrainton the feasibleregion is to add boundaries,suchas
insistingthat each

���
be positive. Boundariescomplicatemattersbecauseextremepointson the boundaries

will not,in general,meetthezero-derivativecriterion,andsomustbesearchedfor in otherways.Youprobably
hadto dealwith boundariesin calculusclass.Boundariescorrespondto inequalityconstraints,which we will
sayrelatively little aboutin this tutorial.

Lagrangemultiplierscanhelpdealwith bothequalityconstraintsandinequalityconstraints.For themajority
of thetutorial,we will beconcernedonly with equalityconstraints,which restrictthefeasibleregion to points
lying on somesurfaceinside

� 
. Eachconstraintwill begivenby a function � �������
	
	�	����� , andwe will only

beinterestedin points
�

where� �������! .1
1If you wanta "�#%$'&�(*) constraint,youcanjustmove the ) to theleft: "�#%$'&,+-).(0/ .
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Figure 1: A one-dimensionaldomain... with a constraint. Maximize the valueof 132 ��4 while satisfying� 265 �7 .
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Figure2: Theparaboloid182 ��4 291�: 4 .
2 Trial by Example

Let’sdo someexamplemaximizations.First,we’ll haveanexampleof notusingLagrangemultipliers.

2.1 A No-Brainer

Let’s sayyou want to know the maximumvalueof
�������;� 1<2 ��4 subjectto the constraint

� 2=5 �> 
(see

figure1). Herewe canjust substituteour valuefor
�

(1) into
�

, andgetour maximumvalueof 1?2@5 4A� 5 . It
isn’t themostchallengingexample,but we’ll comebackto it oncetheLagrangemultipliersshow up. However,
it highlightsa basicway thatwe mightgo aboutdealingwith constraints:substitution.

2.2 Substitution

Let
�����B� : �C� 1D2 ��4 291�: 4 . This is thedownwardcuppingparaboloidshown in figure5. Theunconstrained

maximumis clearlyat
�E� : �F , while theunconstrainedminimumis not evendefined(you canfind points

with
�

aslow asyou like). Now let’s saywe constrain
�

and : to lie on the unit circle. To do this, we add
theconstraint� ���B� : �?�G� 4IH : 4 2J5 �K . Then,we maximize(or minimize)by first solving for oneof the
variablesexplicitly: � 4 H : 4 2L5 �  

(1)� 4 � 5C2M: 4 (2)
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Figure3: Theparaboloid1N2 ��4 2O1�: 4 alongwith two differentconstraints.Left is theunit circle
��4 H : 4�� 5 ,

right is theline
� H : � 5 .

(3)

andsubstituteinto
�

�����B� : �P� 182 � 4 H 1�: 4 (4)� 182 � 5I2M: 4 � 2Q1�: 4 (5)� 5C2M: 4 (6)

Then,we’rebackto aone-dimensionalunconstrainedproblem,whichhasamaximumat : �! , where
�*�=R 5

and
�S� 5 . This shouldn’t betoo surprising;we’re stuckon a circle which trades

��4
for : 4 linearly, while : 4

coststwiceasmuchfrom
�

.
Finding the constrainedminimum hereis slightly morecomplex, andhighlightsoneweaknessof this ap-

proach;theone-dimensionalproblemis still actuallysomewhatconstrainedin that : mustbe in TU2D5 � 5
V . The
minimum

�
valueoccursat boththeseboundarypoints,where

���! 
and

�*�J 
.

2.3 Inflating Balloons

The main problemwith substitutionis that,despiteour stunningsuccessin the last section,it’s usuallyvery
hardto do. Ratherthaninventinga new problemanddiscoveringthis thehardway, let’s stick with the

�
from

thelastsectionandconsiderhow theLagrangemultiplier methodwould work. Figure3(left) showsa contour
plot of

�
. Thecontours,or level curves,areellipses,which arewide in the

�
dimension,andwhich represent

points which have the samevalue of
�

. The dark circle in the middle is the feasibleregion satisfyingthe
constraint� �! . Thearrowspoint in thedirectionsof greatestincreaseof

�
. Notethatthedirectionof greatest

increaseis alwaysperpendicularto thelevel curves.
Imaginethe ellipsesassnapshotsof an inflating andballoon. As the ballonexpands,the valueof

�
along

the ellipsedecreases.The size-zeroellipsehasthe highestvalueof
�

. Considerwhat happensasthe ellipse
expands.At first, thevaluesof

�
arehigh,but theellipsedoesnot intersectthefeasiblecircleanywhere.When

thelongaxisof theellipsefinally touchesthecircleat
�WR 5 �X Y� , �*� 5 asin figure4(left). This is themaximum

constrainedvaluefor
�

– any larger, andnopointonthelevel curvewill bein thefeasiblecircle. Thekey thing
is that,at

�0� 5 , theellipseis tangentto thecircle.2

The ellipsethencontinuesto grow,
�

dropping,intersectingthe circle at four points,until the ellipsesur-
roundsthe circle andonly the shortaxis endpointsarestill touching. This is the minimum (

�6�Z 
,
�7�Z 

,: �=R 5 ). Again, thetwo curvesaretangent.Beyondthis value,thelevel curvesdonot intersectthecircle.
Thecurvesbeingtangentat theminimumandmaximumshouldmakeintuitivesense.If thetwo curveswere

not tangent,imaginea point (call it [ ) wherethey touch. Sincethecurvesaren’t tangent,thenthecurveswill
cross,meetingat [ , asin figreffig:crossing(right).Sincethe

�
contour(light curve) is a level curve, thepoints

to onesideof thecontourhave greater
�

value,while the pointson the othersidehave lower
�

value. Since
we may move anywherealong � andstill satisfythe constraint,we cannudge[ along � to eithersideof the
contourto eitherincreaseor decrease

�
. So [ cannotbeanextremepoint.

2Differentiablecurveswhich touchbut donot crossaretangent,but feel freeto verify it by checkingderivatives!
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Figure4: Level curvesof theparaboloid,intersectingtheconstraintcircle.

This intuition is very important;the entireenterpriseof Lagrangemultipliers (which arecomingsoon,re-
ally!) restson it. Sohere’s another, equivalent,way of looking at thetangentrequirement,which generalizes
better. Consideragainthezoomsin figure4. Now think aboutthenormalvectorsof thecontourandconstraint
curves.Thetwo curvesbeingtangentat a point is equivalentto thenormalvectorsbeingparallelat thatpoint.
Thecontouris a level curve, andso thegradientof

�
,
� �

, is normalto it. But thatmeansthatat anextreme
point [ , thegradientof

�
will beperpendicularto � aswell. This shouldalsomake sense– thegradientis the

directionof steepestascent.At a solution [ , we mustbe on � , and,while it is fine for
�

to have a non-zero
gradient,thedirectionof steepestascenthadbetterbeperpendicularto � . Otherwise,we canproject

� �
onto� , get a non-zerodirectionalong � , andnudge[ alongthat direction, increasing

�
but stayingon � . If the

directionof steepestincreaseanddecreasetakeyouoff perpendicularlyoff of � , then,evenif you arenotat an
unconstrainedmaximumof

�
, thereis no local moveyou canmake to increase

�
which doesnot take you out

of thefeasibleregion � .
Formally, we canwrite our claim thatthenormalvectorsareparallelatanextremepoint [ as:� ��� [ �P� \ � � � [ � (7)

So,ourmethodfor findingextremepoints3 whichsatisfytheconstraintsis to look for pointwherethefollowing
equationshold true: � �������]� \ � � ����� (8)� �����]�  

(9)

We cancompactlyrepresentbothequationsat onceby writing theLagrangian:^ ���B�_\��]� ������� 2 \ � ����� (10)

andaskingfor pointswhere � ^ ���`�a\��]�  
(11)

Thepartialderivativeswith respectto
�

recover theparallel-normalsequations,while thepartialderivative
with respectto

\
recoverstheconstraint� �������! . The

\
is our first Lagrangemultiplier.

Let’s re-solve the circle-paraboloidproblemfrom above using this method. It wasso easyto solve with
substitionthat theLagrangemultiplier methodisn’t any easier(if fact it’s harder),but at leastit illustratesthe
method.TheLagrangianis: ^ ���`�a\��]� ������� 2 \ � ����� (12)� 182 � 4 � 2Q1 �.b4 \`��� 4 � H � 44 265 � (13)

andwewant � ^ ���B�a\��]� � ������� 2 \ � � �����c�! (14)

(15)
3Wecansortout afterwefind themwhichareminima,maxima,or neither.



which givestheequations dd � � ^ ���B�_\��]� 2�1 �e� 2Q1 \,�e�I�7 (16)dd � 4 ^ ���B�_\��]� 2Cf � 4 2Q1 \,� 4 �7 (17)dd \ ^ ���B�_\��]� � 4 � H � 44 2L5 �J (18)

(19)

Fromthefirst two equations,we musthaveeither
\0� 2D5 or

\*� 2�1 . If
\�� 2D5 , then

� 4 �= , ���A�gR 5 , and�*� 5 . If
\�� 2�1 , then

� 4 �=R 5 , �e�I�7 , and
�*�J 

. Thesearetheminimumandmaximum,respectively.
Let’s saywe insteadwanttheconstraintthat

�
and : sumto 1 (

� H :-2L5 �! ). Then,we have thesituation
in figure??(right). Beforewe do anything numeric,convinceyourselffrom the picturethat the maximumis
going to occurin the(+,+) quadrant,at a point wherethe line is tangentto a level curve of

�
. Also convince

yourselfthattheminimumwill notbedefined;that
�

valuesgetarbitrarily low in bothdirectionsalongtheline
away from themaximum.Formally, wehave^ ���`�a\��]� ������� 2 \ � ����� (20)� 182 � 4 � 2Q1 �.b4 \`���e� H � 4 265 � (21)

andwewant � ^ ���B�a\��]� � ������� 2 \ � � �����c�! (22)

(23)

which gives dd �e� ^ ���`�a\��]� 2�1 � � 2 \��! (24)dd � 4 ^ ���`�a\��]� 2Cf � 4 2 \��! (25)dd \ ^ ���`�a\��]� � � H � 4 265 �J (26)

(27)

We canseefrom thefirst two equationsthat
���D� 1 � 4 , which, with, sincethey sumto one,means

�e�D� 1Yh�i ,� 4 � 5jh�i . At thosevalues,
�*� fkh�i and

\�� 2Cfkh�i .
Sowhatdo we have so far? Givena functionanda constraint,we canwrite the Lagrangian,differentiate,

andsolve for zero. Actually solving that systemof equationscanbe hard,but notethat the Lagrangianis a
functionof l +1 variables( l ��� plus

\
) andsowe do have theright numberof equationsto hopefor unique,

existingsolutions:l from the
� �

partialderivatives,plusonefrom the
\

partialderivative.

2.4 Mor e Dimensions

If we want to have mutliple constraints,this methodstill works perfectlywell, thoughit get harderto draw
the picturesto illustrate it. To generalize,let’s think of the parallel-normalidea in a slightly differentway.
In unconstrainedoptimization(no constraints),we knew we wereat a local extremebecausethe gradientof�

was zero– therewasno local direction of motion which increased
�

. Along camethe constraint� and
dashedall hopesof thegradientbeingcompletelyzeroat a constrainedextreme[ , becausewe wereconfined
to � . However, we still wantedthat therebeno directionof increaseinsidethe feasibleregion. This occured
whenever the gradientat [ , while probablynot zero, had no componentswhich were perpendicularto the
normalof � at [ . To recap:in thepresenceof a constraint,

� ��� [ � doesnot have to bezeroat a solution [ , it
just hasto beentirelycontainedin the(one-dimensional)subspacespannedby

� � � [ � .
The last statementgeneralizesto multiple constraints.With multiple constraints� � �����;�m 

, we will insist
that a solution [ satisfy each � � � [ �n�o 

. We will also want the gradient
� ��� [ � to be non-zeroalong the



Figure5: A sphericallevel curveof thefunction
�������c�qp �rp

with two constraintplanes,: � 2D5 and s � 2D5 .
directionsthat [ is free to vary. However, given the constraints,[ cannotmake any local movementalong
vectorswhich have any componentperpendicularto any constraint.Therefore,our conditionshouldagainbe
that

� ��� [ � , while not necessarilyzero,is entirelycontainedin thesubspacespannedby the
� � � � [ � normals.

We canexpressthis by theequation

� �������]� t � \�� � � �a����� (28)

Whichassertsthat
� ��� [ � bea linearcombinationof thenormals,with weights

\ �
.

It turnsout thattossingall theconstraintsinto a singleLagrangianaccomplishesthis:

^ ���`�a\��]� ������� 2 t � \�� � �X����� (29)

It shouldbe clear that differentiating
^ ���B�_\��

with respectto
\ �

andsettingequalto zerorecoversthe u th
constraint,� � �������q , while differentiatingwith respectto the

� �
recoverstheassertionthat thegradientof

�
havenocomponentswhich aren’t spannedby theconstraintsnormals.

As an exampleof multiple constraints,considerfigure ??. Imaginethat
�

is the distancefrom the origin.
Thus,thelevel surfacesof

�
areconcentricsphereswith thegradientpointingstraightoutof thespheres.Let’s

saywe want the minimum of
�

subjectto the constraintsthat : � 2D5 and s � 2D5 , shown asplanesin the
figure. Again imaginethe spheresasexpandingfrom the center, until it makescontactwith the planes.The
unconstrainedminimum is, of course,at the origin, where

� �
is zero. The spheregrows, and

�
increases.

Whenthesphere’sradiusreachesone,thespheretouchesbothplanesindividually. At thepointsof contact,the
gradientof

�
is perpendicularto thetouchingplane.Thosepointswouldbesolutionsif thatplaneweretheonly

constraint.Whenthespherereachesa radiusof v 1 , it is touchingbothplanesalongtheir line of intersection.
Notethat thegradientis not zeroat thatpoint, nor is it perpendicularto eithersurface.However, it is parallel
to an(equal)combinationof the two planes’normalvectors,or, equivalently, it lies insidetheplanespanned
by thosevectors(theplane

���J 
, [not shown dueto my lackingmatlabskills]).

A goodway to think aboutthe effect of addingconstraintsis asfollows. Beforethereareany constraints,
thereare l dimensionsfor

�
to varyalongwhenmaximizing,andwewantto find pointswhereall l dimensions

have zerogradient. Every time we adda constraint,we restrictonedimension,so we have lessfreedomin
maximizing. However, that constraintalsoremovesa dimensionalongwhich the gradientmustbezero. So,
in the“nice” case,we shouldbeableto addasmany or few constraints(up to l ) aswe wish, andeverything
shouldwork out.4

4In the“not-nice” cases,all sortsof thingscangowrong.Constraintsmaybeunsatisfiable(e.g. $I(�/ and $I(Mw , or subtlersituations
canpreventtheLagrangemultipliersfrom existing [more].



3 The Lagrangian

TheLagrangian̂
���B�_\��N�x������� H@y � \ � � � ����� is a functionof l H{z variables(rememberthat

�S|O� 
, plus

onefor eachof the
z \ � |g\

). Dif ferentiatinggivesthe correspondingl H7z equations,eachset to zero,
to solve. The l equationsfrom differentiatingwith respectto each

� �
recoversour gradientconditions.Thez

equationsfrom differentiatingwith respectthe
\��

recover theconstraints� � . Sothenumbersgive ussome
confidencethatwehave theright numberof equationsto hopefor point solutions.

It’shelpful to haveanideaof whattheLagrangianactuallymeans.Therearetwo intuitions,describedbelow.

3.1 The Lagrangian asan Encoding

First,wecanlook attheLagrangianasanencodingof theproblem.Thisview is easyto understand(but doesn’t
really getusanywhere).Whenever theconstraintsaresatisfied,the � � arezero,andsoat thesepoint, regarless
of thevalueof the

\ �
multipliers,

^ ���B�_\��}�!�������
. This is a goodfactto keepin mind.

You could imagineusingthe Lagrangianto do constrainedmaximizationin the following way. You move�
around

� 
looking for a maximumvalueof

�
. However, you have no controlover

\
, which getssetin the

worstway possiblefor you. Therefore,whenyou choose
�
, ~�� zn��� � is chosento minimize

^
. Formally, the

problemis to find the
�

which gives �.��� ������ �������� ^ ���B�_\��X�
(30)

Now rememberthat if your x happensto satisfythe constraints,̂
���`�a\��<�m�������

, regardlessof what
\

is.
However, if

�
doesnot satisfytheconstraints,some� �X��������� . But then,

\��
canbefiddledto make

^ ���B�a\����
assmall asdesired,and

����� � ^ ���B�_\�� will be 2A� . So
� �

will be the maximumvalueof
�

subjectto the
constraints.

3.2 Reversing the Scope

Theproblemwith the above view of the Lagrangianis that it really doesn’t accomplishanything beyonden-
codingtheconstraintsandhandingusbackthesameproblemwe startedwith: find themaximumvalueof

�
,

ignoringthevaluesof
�

which arenot in thefeasibleregion. More usefully, we canswitchthe
�����

and
�����

from theprevioussection,andtheresultstill holds:� � � ������ �������� ^ ���B�_\��X�
(31)

This is partof thefull Kuhn-Tuckertheorem(cite),whichwearen’t goingto proverigorously. However, the
intuition behindwhy it’s trueis important.Beforewe examinewhy this reversalshouldwork, let’s seewhatit
accomplishesif it’s true.

We originally hadaconstrainedoptimizationproblem.Wewouldverymuchlike for it to becomeanuncon-
strainedoptimizationproblem.Oncewe fix thevaluesof the

\ �
multipliers,

^ ���B�a\��
becomesa functionof

�
alone.We mightbeableto maximizethatfunction(it’sunconstrained!)relatively easily. If so,wewouldgeta
solutionfor each

\
, call it

� � ��\��
. But thenwe cando anunconstrainedminimizationof

� � ��\��
over thespace

of
\
. We would thenhaveoursolution.

It might not beclearwhy that’sany differentthatfixing
�

andfinding a minimizing value
\ � �����

for each
�
.

It’ s differentin two ways. First, unlike
� � �W\��

,
\ � �����

would not becontinuous.(Rememberthat it’s negative
infinity almosteverywhereandjumpsto

�������
for
�

which satisfytheconstraints.)Second,it is oftenthecase
thatwe canfind aclosed-formsolutionto

� � �W\��
while we havenothingusefulto sayabout

\ � �����
. This is also

a generalinstanceof switchingto a dualproblemwhenaprimal problemis unpleasantin someway. [cites]

3.3 Duality

Let’s saywe’reconvincedthatit wouldbea goodthing if������ �����%�� ^ ���`�a\����]� ���%�� �������� ^ ���B�_\��X�
(32)
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Figure6: TheLagrangianof theparaboloid182 ��4 with theconstraint
� 265 �! .

Now, we’ll arguewhy this is true,examplesfirst, intuition second,formal proof elsewhere. Recalltheno-
brainerproblem:maximize

��������� 182 ��4 subjectto
� 265 �J . Let’s form theLagrangian.^ ���`�a\��]� 182 � 4 2 \`��� 265 � (33)

This surfaceis plottedin figure ??. The straightdark line is the valueof
^

at
�J� 5 . At that value,the

constraintis satisfiedandso,aspromised,
\

hasno effect on
^

and �c� z0��� � ���`�a\��8���������?� 5 . At each
�
,\ � �����

be 2A� , exceptfor
��� 5 where

\ � �����c� 5 . Thecurvingdarkline is thevalueof
^

at
���7� � �W\��

for all\
. Theminimum

^
valuealongthis

� � �W\��
line is at

�E� 5 �_\n� 1 , where
�E� 5 , which is themaximum(and

only) valueof
�������

amongthepoint(s)satisfyingtheconstraint.

3.4 A sort-of proof of sort-of the Kuhn-Tucker thereom

TheLagrangianis hardto plot when lS�!5 . However, let’sconsiderwhathappensin theenvironmentof apoint[ which satisfiesthe constraints,andwhich is a local maximumamongthe pointssatisfyingthe constraints.
Sinceeach� ��� [ �}�= , thederivativesof

^ ���B�_\��
with respectto each

\��
arezero.

� ��� [ � maynot bezero.But
if
� ��� [ � hasany componentwhich is not in thespacespannedby theconstraintnormals

� � �a� [ � , thenwe can
nudge[ in adirectioninsidetheallowedregion,increasing

��� [ � . Since[ is a localminimuminsidethatregion,
that isn’t possible.So

� ��� [ � is in thespacespannedby theconstraintnormals
� � ��� [ � , andcanthereforebe

written asa (unique)linear combinationof thesenormals. Let
� ��� [ �;� y � \ � � � � � [ � be that combination.

Thenclearly
� ��� [ � 2 y � \ � � � � � [ �c�7 .

Now consideravector
\��

near
\
.
� ��� [ � 2 y � \��� � � � � [ � cannotstill bezero,becausethelinearcombination

weights
\

areunique.But
� ^ � [ �a\����}� � ��� [ � 2 y � \��� � � �X� [ � is non-zero.Thus,fixing

\��
andallowing [ to

vary, thereis somedirection(either
� ^ � [ �a\���� or thereversedirectionwherewe couldnudge[ to increasê .

Therefore,at
\B� [ � , � � ��\�� is at a localminimum.

Anotherway to rememberthis intuitively is that
\

is probablynot zero,and, if we set it to zero(a huge
nudge),

^ ���B�X ��;�m�������
, andso the maximumof

^
is the unconstrainedmaximumof

�
, which canonly be

largerthan
��� [ � .

Let’slook anothermoreexample.Recalltheparaboloid(figure5) with theconstraintthat
�

and: sumto one.
Themaximumvalueoccuredat

���`� : �N�K� 1Yh�i � 5jh�i � , where
�O� fkh�i . The

\
valuewas 2Cf�h�i . Figure7 shows

whathappenswhenwe nudge
\

up anddown slightly. At
\n�g 

, theLagrangian̂ is just theoriginal surface�
. Its maximumvalue(2) is at theorigin (which obviously doesn’t satisfytheconstraint).At

\M� 2Cf�h�i , the
maximumvalueof theLagrangianis at [ �q� 1Yh�i � 5�h�i � , (whichdoessatisfytheconstraints).Thegradientof

�
is not zero,but it is perpendicularto theconstraintline, so [ is a local maximumalongthatline. Anotherway
of thinking of this is that thegradientof

�
(thetop arrow field) is balancedat thatpoint by thescaledgradient

of theconstraint(thesecondarrow field down). We canseetheeffect by addingthesetwo fields,which forms
thegradientof theLagrangian(third arrow field). This gradientis zeroat [ with theright

\
. If we nudge

\
up

to 2Cfkh�i H  ,	 5 , thensuddenlythegradientof
�

is no longercompletelycancelledout by
\ � � , andsowe can
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Figure7: Lagrangiansurfacesfor theparaboloid182 ��4 2Q1�: 4 with theconstraint
� H :-2L5 �J .

increasethelagrangianby nudging[ towardtheorigin. Similarly, if wenudge
\

down to 2Cf�h�iC2  ,	 5 , thenthe
gradientof

�
is over-cancelledandwe canincreasetheLagrangianby nudging[ away from theorigin.

3.5 What do the multipliers mean?

A usefulaspectof theLagrangemultiplier methodis that thevaluesof themultipliersat solutionpointsoften
hassomesignificance.Mathematically, amultiplier

\��
is thevalueof thepartialderivativeof

^
with respectto

theconstraint� � . Soit is therateatwhichwecouldincreasetheLagrangianif wewereto raisethetargetof that
constraint(from zero).But rememberthatat solutionpoints[ ,

^ � [ �a\��c�=��� [ � . Therefore,therateof increase
of theLagrangianwith respectto thatconstraintis alsotherateof increaseof themaximumconstrainedvalue
of
�

with respectto thatconstraint.

In economics,when
�

is a profit functionandthe � � areconstraintson resourceamounts,
\��

would be the
amount(possiblynegative!) by which profit would riseif onewereallowedonemoreunit of resourceu . This
rateis calledtheshadowpriceof u , which is interpretedastheamountit wouldbeworth to relaxthatconstraint
upwards(by R&D, mining,bribery, or whatevermeans).

[Physicsexample?]

4 A bigger examplethan you probably wanted

This sectioncontainsa big exampleof usingthe Lagrangemultiplier methodin practice,aswell asanother
casewherethemultipliershaveaninterestinginterpretation.
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Figure8: Thesimplex
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4.1 Maximum Entropy Models

5 Extensions

5.1 Inequality Constraints

The Lagrangemultiplier methodalsocoversthe caseof inequalityconstraints.Constraintsof this form are
written � �������G . The key observationaboutinequalityconstraintswork is that, at any given

�
, a � ����� has

either � �����c�! or � ����� �  , whicharequalitativelyverydifferent.Thetwo possibilitiesareshown in figure??.
If � �����8�� then � is saidto beactiveat

�
, otherwiseit is inactive. If � is active at

�
, then � is a lot like an

equalityconstraint;it allows
�

to bemaximumif thegradientof
�

,
� �������

, is eitherzeroor pointing towards
negativevaluesof � (whichviolatetheconstraint).However, if thegradientis pointingtowardspositivevalues
of � , thenthereis no reasonthatwe cannotmove in thatdirection.Recallthatwe usedto write� �������c�J\ � � ����� (34)

for a (single)equalityconstraint.Theinterpretationwasthat, if
�

is a solution,
� �������

mustbeentirely in the
directionof thenormalto � ����� , � � ����� . For inequalityconstraints,wewrite� �������c�J� � � ����� (35)

but, if x is a maximum,thenif
� �������

is non-zero,it not only hasto be parallel
� � ����� , but it mustactually

point in theoppositesensealongthatdirection(i.e.,outof thefeasiblesideandtowardstheforbiddenside).We
canactuallyenforcethis very simply, by restrictingthemultiplier to benegative(or zero).Positive mutlipliers
meanthatthedirectionof increasing

�
is in thesamedirectionasincreasing� ����� – but pointsin thatsituation

certainlyaren’t solutions,aswe wantto increase
�

andwe areallowedto increase� .
If � is inactiveat

�
( � ����� �  ), thenwe wantto beevenstricteraboutwhatvaluesof

�
areacceptablefrom

a solution.In fact,in this case,
�

mustbezeroat
�
. (Intuitively, if � is inactive,thennothingshouldchangeat�

if wedrop � ). [betterexplanation]
In summary, for inequalityconstraints,we addthemto the Lagrangianjust as if they wereequalitycon-

straints,exceptthatwe requirethat
�9�J 

andthat,if � ����� is not zero,then
�

is. Thesituationthatoneor the
othercanbenon-zero,but notboth,is referredto ascomplementaryslackness. Thissituationcanbecompactly
writtenas

� � �����}�7 . Bundlingit all up,completewith multiple constraints,wegetthegeneralLagrangian:^ ���`�a\B���B�c�!������� 2 t � \�� � �a����� 2 t�  �
 
�
  �����

(36)

TheKuhn-Tucker theorem(or our intuitivearguments)tell usthatif a point
�

is a maximumof
�

subjectto
theconstraints� � and � � , then:� ^ ���`�a\B���B�]� � ������� 2 t � \�� � � �X����� 2 t�  �

  � �
  �����c�! 

(37)



¡ u ��� � �  
(38)t   �   �

  �����]�  
(39)

The secondcondition takescareof the restrictionon active inequalities. The third condition is a somewhat
crypticway of insistingthatfor eachu , either

� �
is zeroor � � ����� is zero.

Now is probablya goodtime to point out that thereis more to the Kuhn-Tucker theoremthan the above
statement.Theaboveconditionsarecalledthefirst-orderconditions.All (local)maximawill satisfythem.The
theoremalsogivessecondorderconditionsonthesecondderivative(Hessian)matriceswhichdistinguishlocal
maximafrom othersituationswhich cantrigger “f alsealarms”with the first-orderconditions. However, in
many situations,oneknows in advancethatthesolutionwill bea maximum(suchasin themaximumentropy
example).

Caveataboutglobals?

6 Conclusion

This tutorial only introducesthe basicconceptsof the Langrangemultiplier methods.If you are interested,
thereare many detailedtexts on the subject[cites]. The goal of this tutorial was to supply someintuition
behindthecentralideassothatother, morecomprehensiveandformal sourcesbecomemoreaccessible.

Feedbackrequested!


